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ABSTRACT

An instability involving the resonant interaction of a Rossby wave and a Kelvin wave has been proposed to

drive equatorial superrotation in planetary atmospheres with a substantially smaller radius or a smaller ro-

tation rate thanEarth, that is, with a large thermal Rossby number. To pursue this idea, this paper investigates

the equilibration mechanism of Kelvin–Rossby instability by simulating the unforced initial-value problem in

a shallow-water model and in a multilevel primitive equation model. Although the instability produces

equatorward momentum fluxes in both models, only the multilevel model is found to superrotate. It is argued

that the shortcoming of the shallow-water model is due to its difficulty in representing Kelvin wave breaking

and dissipation, which is crucial for accelerating the flow in the tropics. In the absence of dissipation, the zonal

momentum fluxed into the tropics is contained in the eddy contribution to the mass-weighted zonal wind

rather than the zonal-mean zonal flow itself. In the shallow-water model, the zonal-mean zonal flow is only

changed by the eddy potential vorticity flux, which is very small in our flow in the tropics and can only

decelerate the flow in the absence of external vorticity stirring.

1. Introduction

A planetary atmosphere is said to superrotate when

the wind at some location blows faster in the direction of

rotation than the equatorial surface. This is invariably

associated with prograde zonal winds over the equator,

as inertial stability demands that atmospheric angular

momentum decrease poleward on isentropic surfaces.

Superrotation is not unusual in the solar system, being

observed both in gas giants like Jupiter and Saturn and

in small(er) planets and moons like Venus and Titan. It

is not observed to any appreciable extent in present-day

Earth’s troposphere. Nevertheless, it is conceivable that

Earth’s atmosphere might transition to a strongly su-

perrotating state if the tropics were to become more

active, for instance, in a warmer climate (Caballero and

Huber 2010). The importance of understanding this

transition is enhanced because there are suggestions

that the dynamical feedbacks associated with increas-

ing tropical upper-tropospheric westerlies could lead

to abrupt climate change (Suarez and Duffy 1992;

Saravanan 1993).

Because a symmetric circulation conserves angular

momentum in the absence of dissipation, superrotation

requires a momentum source at the equator (Hide

1969). In most geophysically relevant scenarios, this

momentum source will be due to eddy stresses, so su-

perrotation can be described as an example of an eddy-

driven jet. The traditional paradigm for superrotation is

based on the generation and propagation of Rossby

waves, which decelerate the flow where they dissipate

and drive a westerly acceleration over their source re-

gion (e.g., Vallis 2006). This would be analogous to the

spinup of the extratropical eddy-driven jet except that

other mechanisms than baroclinic instability must be

responsible for generating the Rossby waves in the
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tropics. A plausible forcing mechanism is localized

tropical heating, either steady or transient. Idealized

models subject to steady asymmetric thermal forcing in

the tropics can produce superrotation (Suarez andDuffy

1992; Kraucunas and Hartmann 2005), while large-scale

propagating convection like the terrestrial Madden–

Julian oscillation may also play a role in convecting at-

mospheres (Lee 1999). Motivated by the superrotation

of tidally locked planets, Showman and Polvani (2011)

studied the atmospheric response to steady asymmetric

heating in a hierarchy of atmospheric models. They

noted important differences between divergent and

nondivergent models and proposed an alternative su-

perrotation mechanism based on the interaction be-

tween an equatorial Kelvin wave and an off-equatorial

Rossby wave. The differential zonal propagation of

these two waves gives rise to a meridional tilt in the

geopotential height, which produces an equatorward

eddy momentum flux. They argued that this mechanism

could bemore relevant for tropical eddy-driven jets than

meridional Rossby wave propagation because Rossby

wave forcing is weak at the equator (Sardeshmukh and

Hoskins 1988) and tropical waves are often trapped

meridionally (Matsuno 1966).

On the other hand, spontaneous transition to super-

rotation with no explicit tropical wave forcing (i.e., with

zonally symmetric heating) has been found in some

idealized model studies of nonconvecting atmospheres.

For instance, Williams (2003) found that an idealized

dry GCM produces superrotation when the subtropical

(meaning thermally forced) jet is sufficiently close to the

equator. Williams attributed this finding to the genera-

tion of Rossby waves by a form of barotropic instability,

but it is difficult to reconcile the simulated behavior

with traditional barotropic instability. More recently,

Mitchell and Vallis (2010) and Potter et al. (2014)

performed a systematic sensitivity analysis of the gen-

eral circulation in the idealized Held and Suarez model

(Held and Suarez 1994) to the model’s external pa-

rameters. They found a robust transition to super-

rotation at large thermal Rossby numbers (i.e., for

atmospheres with wide tropical regions), making this an

appealingmodel for superrotation in small and/or slowly

rotating planets and moons like Venus or Titan.

In the model of Potter et al. (2014), the waves trans-

porting momentum into the equator are large scale

(wavenumber 1) and equivalent barotropic and have a

mixed meridional structure with Kelvin wave charac-

teristics at the equator and Rossby wave characteristics

in midlatitudes. This structure is similar to the forced

solutions of Showman and Polvani (2011) for the

Matsuno–Gill problem and can likewise produce equa-

torial acceleration based on the mechanism proposed

by these authors. The main difference is that the waves

are now internally generated in the absence of asym-

metric heating. A possible generation mechanism is an

ageostrophic instability associated with the resonant

interaction between a Kelvin wave and a Rossby wave

that has been proposed by Iga and Matsuda (2005)

to drive Venusian superrotation. Although coupled

Kelvin–Rossby instabilities had been studied earlier in a

number of contexts, such as the stability analysis of

oceanic density currents (Sakai 1989; Gula et al. 2009) or

the tropical atmosphere (Dunkerton 1990; Winter and

Schmitz 1998), Iga and Matsuda (2005) noted the pos-

sibility of a planetary-scale atmospheric version of this

phenomenon as being relevant for superrotation. These

authors studied the linear stability of plausible Venusian

wind profiles in a shallow-water model, finding an un-

stable mode with mixed Kelvin–Rossby structure that

grows by fluxing momentum from midlatitudes to

the equator. More recently, Wang and Mitchell (2014)

have studied the linear stability of a primitive equation

model for parameter regimes representative of the su-

perrotating simulations of Potter et al. (2014), finding

again coupled Kelvin–Rossby modes with equatorward

momentum fluxes.

It is plausible that this ageostrophic barotropic in-

stability may also be responsible for superrotation in the

simulations of Williams (2003), as conventional baro-

tropic instability cannot produce a westerly acceleration

at the equator without a reversal in sign of the

equatorial-mean vorticity gradient. Ageostrophic di-

vergence adds a layer of complexity to classical quasi-

geostrophic barotropic and baroclinic stability. Instability

conditions are more difficult to assess (Ripa 1983) and do

not constrain the flow as much as in the balanced case:

a large number of modes combining balanced and un-

balancedmotions are typically found even if growth rates

are small [even the simpleCouette flowbecomes unstable

in that case—albeit weakly so as theRossby number (Ro)

approaches zero—as noted by Vanneste and Yavneh

(2007)]. Nevertheless, there are cases in which unstable

modes can be most easily understood as involving the

interaction between a Kelvin component and a Rossby

component (e.g., Sakai 1989).

An additional argument for the relevance of Kelvin

waves for shear instability coupling midlatitudes with

the tropics can be made using pseudomomentum argu-

ments. With the standard sign conventions, eddies with

positive (negative) pseudomomentum propagate west-

ward (eastward) relative to the mean flow and tend to

accelerate the mean flow in that direction when they are

dissipated. In addition, unstable modes must have zero

pseudomomentum. As a result, one may interpret some

unstable modes as the superposition (or resonance) of
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neutral modes with different-sign pseudomomentum

(Hayashi and Young 1987). Since Rossby waves have

westerly pseudomomentum in a positive PV gradient,

unstable resonance must necessarily involve interaction

with a mode with easterly pseudomomentum, such as

the Kelvin wave. There is thus an analogy between

Kelvin–Rossby instability and classical barotropic

Rossby–Rossby instability, with the equator playing the

role of the region of negative PV gradient. The pseudo-

momentum conservation relation is

›A

›t
1= � F5Dissipation, (1)

where A is pseudomomentum and F the Eliassen–Palm

(EP) flux (Andrews and McIntyre 1976). Growth of the

instability requires an EP flux from the regions with

easterly pseudomomentum to the regions with westerly

pseudomomentum or a momentum flux in the opposite

direction. Specifically, the precise forms of A and F for

the shallow-water model are

A5
h2

2

q02

q
y

2u0h0 and F52h u0y0 , (2)

where u and y are the horizontal wind components, h is

height, and q is potential vorticity. Only the first (sec-

ond) component of A is nonzero for a pure Rossby

(Kelvin) component. As a result of these constraints, a

growing Kelvin–Rossby mode must have an eddy mo-

mentum flux directed toward the equator as found by

Iga and Matsuda (2005), who also interpret their results

using pseudomomentum. When these modes dissipate,

they drive an irreversible westerly (easterly) acceler-

ation over the equator (midlatitudes).

As an intermediate step between the linear stability

analysis of Wang and Mitchell (2014) and the super-

rotating forced-dissipative simulations of Potter et al.

(2014), this paper investigates the equilibration of

Kelvin–Rossby instability by simulating the unforced

initial-value problem. Based on the arguments above,

we would expect this equilibration to produce super-

rotation. We first study the equilibration in the shallow-

water model, which is the simplest model that can

capture the instability. No equatorial acceleration, in the

sense of the generation of positive zonal-mean zonal

wind, is found in this case, which is striking but never-

theless consistent with previous findings on shallow-

water superrotation (Scott and Polvani 2008; Showman

and Polvani 2010). Comparable simulations in a dry

multilevel GCM are found to superrotate—explaining

this difference is a major objective of our study.

The paper is structured as follows. Section 2 intro-

duces the setup and the models used. Section 3 studies

the shallow-water equilibration, and section 4 describes the

primitive equation simulations. We discuss the relation of

our shallow-water results with previous studies in

section 5, and section 6 concludes with a short summary.

2. Model setup

We will simulate the Kelvin–Rossby (KR) instability

of a barotropic zonal jet u 6¼ f (p) using both a one-layer

model and a multilevel primitive equation model. Pre-

vious studies have shown that the parameter region of

instability for these modes is narrow, requiring nonsmall

Rossby numbers and Froude numbers of order 1. The

former implies that the jet speed is not much smaller

than Va, which is more easily satisfied in small, slowly

rotating planets. The latter stems from the requirement

that the Kelvin and Rossby waves phase lock (or reso-

nate), which only occurs for a limited parameter range.

Wang and Mitchell (2014) investigate the instability

properties of a basic state consisting of a subtropical

jet defined by angular momentum conservation

u(f)5Va sin(f) tan(f) up to a latitude f0, poleward

of which the zonal wind tapers off as exp (2f2). One

problem with this choice of basic state is that it is asso-

ciated in many cases with a reversal of the absolute

vorticity gradient, which may lead to shortwave baro-

tropic instability. To prevent this, we have chosen to

define the basic state in terms of its absolute vorticity

instead, as follows:

j
a
5 f 1 j5

(
af 5 2Va sin(f) , jfj#f

0

a
2
f 5 2V[cos22(f

0
)

2a tan2(f
0
)]sin(f) , jfj.f

0

(3)

so that absolute vorticity is a constant fraction, a or a2,

of the Coriolis parameter on the equatorward and

poleward sides of the jet, respectively. We will only

consider cases with a, 1, with the limit a5 0 corre-

sponding to angular momentum conservation. In con-

trast, the constant a2 will always exceed 1 because we

define it with the condition that the area-weighted rel-

ative vorticity integrates globally to zero, which gives

a2 5 cos22(f0)2a tan2(f0). This ensures that the zonal

wind goes to zero at both the equator and the poles. In

practice, we smooth the vorticity jump at f5f0 using a

tanh function with df5 58 to reduce small-scale ripples

in our spectral model.

Figures 1a and 1b show the absolute vorticity and

zonal wind with f0 5 508 and a5 0 or a5 0:4 for a

planet with the same rotational speed as Earth and a

radius 4 times smaller (the configuration used in our
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simulations). The main difference with the basic state of

Wang and Mitchell (2014) is that relative vorticity does

not go to zero at the pole, which is more consistent with

the basic states of Iga and Matsuda (2005). This differ-

ence should have little impact on the KR modes on the

equatorward side of the jet (our results with a5 0 are

similar to those of Wang and Mitchell despite the dif-

ferent basic state).

To study the instability and equilibration of the above

wind profile, it is necessary to construct an initial bal-

anced state. There are two ways to achieve this in the

shallow-water model (Iga and Matsuda 2005). One can

start from a perturbed basic state h0(f) in nonlinear

wind balance with the zonal wind profile:

f u
0
(f)1

u
0
(f)2 tan(f)

a
52

g

a

›h
0
(f)

›f
, (4)

where bars indicate zonal means and u0(f) is the wind

profile defined above. Alternatively, one can take

h0(f)5H0 5 constant (where H0 is the mean fluid

depth) and add a topographic forcing to the shallow-

water y-momentum equation, which becomes

›y

›t
1

u

a cos(f)

›y

›l
1

y

a

›y

›f
1

u2 tan(f)

a
1 fu52

g

a

›(h1h
T
)

›f
,

with the topography defined by 2g›hT /a›f5
f u0(f)1 u0(f)

2 tan(f)/a. In the narrow parameter re-

gime of instability where the Kelvin and Rossby waves

phase lock with Rossby numbers of order 1, we have

cK ;O(
ffiffiffiffiffiffiffiffiffi
gH0

p
); cR ;O(Va). This sets a constraint on

the mean fluid depth H0, which must be on the order of

the equator-to-pole height difference imposed by geo-

strophic balance [Eq. (4)]. We utilize the topography

to prevent small or negative values of h at the poles.

Except for this zonal-mean topography, our shallow-

water model is standard.

Constructing an initial state in balance with an arbi-

trary zonal wind profile in a primitive equation model is

not trivial (e.g., Polvani and Esler 2007). However,

things are much simpler with our barotropic basic state

in which u0 is independent of p and u0 5QR(p) is

independent of y, where QR is a reference potential

temperature profile (defined below). We first calculate

the surface pressure field ps0 in balance with the initial

wind profile integrating the equation

f u
0
1

u2
0 tan(f)

a
52

1

r0

›p
s0

a›f
52RQ

R
(p

s0
)

�
p
s0

p
0

�k› logp
s0

a›f
.

(5)

After computing ps0, it is trivial to calculate the initial

temperature field at the pressure/sigma levels in terms

of the reference potential temperature profile QR(p).

This is shown in Fig. 1c for the basic state with a5 0 (the

isotherms are not horizontal using a sigma vertical scale

because of the large surface pressure changes).

To integrate Eq. (5), we need to provide a polar surface

pressure. We use the value ps0(2p/2)5 1000 hPa, much

larger than typical meridional pressure variations, to

avoid the negative-depth problems found in the shallow-

water model. This in practice prevents external Kelvin–

Rossby instabilities—we will focus on instabilities due

FIG. 1. (a) Absolute vorticity for the basic states with a5 0 (red) and a5 0:4 (blue) for a planet 4 times smaller than Earth. The Coriolis

parameter is also shown in black for reference. (b) Zonal wind profiles for the same basic states. (c) Initial balanced temperature for the

multilevel simulation with a5 0 and DQ5 10K.
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to interaction between Rossby waves and internal, ver-

tically propagating Kelvin waves. These are sensitive to

the reference temperature profile, for which we choose a

simple, uniformly stratified profile that extends to the

top model level at 4.6 hPa (there is no tropopause):

Q
R
(p)5Q

0
2DQ log

�
p

p
0

�
. (6)

This profile has stratification ›QR/›z’DQ/H (H is

the density scale height) so that vertically propagating

Kelvin waves with vertical wavelength Lz have zonal

phase speed cK }NLz ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gL2

zDQ/(Q0H)
p

. We will use in

this paper DQ5 10K and the reference values

p0 5 105 Pa and Q0 5 300K. Finally, we note that a

sponge is added to damp the eddies near the model top

with viscosity n (s)5 107 exp[2 (s/0:05)2] (m2 s21). We

have performed a sensitivity analysis varying the depth

and strength of the sponge to make sure that our results

are robust.

We have chosen this barotropic state for the primitive

equation model to avoid any possibility of baroclinic

instability and to provide a cleaner comparison with the

shallow-water model. The hope is that the characteris-

tics of the evolution of this KR instability is qualitatively

similar when it is isolated from baroclinic instability in

this way and when it is competing with baroclinic in-

stability in more realistic settings.

In the following sections, we describe the growth and

equilibration of the KR modes in the two models. In

both cases, the simulations are initialized adding a

small perturbation to the balanced barotropic jet de-

scribed above. This perturbation is small enough that

the most unstable mode has time to emerge before the

eddies become nonlinear (as manifest by the uniform

exponential growth and robust wave-1 perturbation

structure through a few decades of eddy kinetic energy;

see, e.g., Fig. 2a). We do not emphasize the linear in-

stability analysis itself as these are covered by Iga and

Matsuda (2005) and Wang and Mitchell (2014) for the

shallow-water and primitive equation instabilities,

respectively.

3. Shallow-water results

We consider a basic state with a midlatitude jet de-

fined by angular momentum conservation (a 5 0) up

to a latitude f0 5 508, in a planet with the same rotation

speed as Earth but a size 4 times smaller (thick red line

in Fig. 1). A T42 resolution is sufficient for this small

planet size, in which wavenumber 1 dominates. With the

chosen configuration, the most unstable mode is ob-

tained near the shallow-water depth gH0 5 1000m2 s22.

Note that although the parameter regime of KR in-

stability is narrow, this instability is not weak: the

e-folding time is less than a day with these parameters

(s21 ’ 0.75 days).

Figure 2b shows the structure of the perturbation that

emerges near the end of the linear growth stage (cor-

responding to the time t 5 10 days in Fig. 2a). The

unstable mode has the characteristic KR structure de-

scribed in previous studies, coupling an equatorial

Kelvin wave with a Rossby wave propagating on the

midlatitude jet. Also consistent with previous studies,

the mode has a robust equatorward momentum flux

(Fig. 2c), which one is tempted to use as a smoking gun

for superrotation. Yet the actual rate of change of the

zonal-mean zonal wind vanishes over a broad tropical

region (blue line in Fig. 2d).

We can understand the lack of equatorial acceleration

by writing the zonal momentum equation in the form

›u

›t
5 y(f 1 j) . (7)

Zonal-mean zonal wind acceleration requires a positive

eddy vorticity flux. This can only happen in the presence

of a tropical Rossby wave source, as Rossby wave

growth or dissipation/breaking can only decelerate the

flow with a positive vorticity gradient.

For the specific KR instability problem considered

here, tropical vorticity fluxes are not just negative

but also very small. The symmetry of the problem

demands a zero-vorticity flux at the equator [the im-

portance of which is emphasized in this context by

Showman and Polvani (2011)], but the region of weak

vorticity flux is broad and persists when symmetry is

broken (not shown). It owes its existence to the small-

ness of absolute vorticity over a broad tropical region

characteristic of KR instability. With weak vortex

stretching, vorticity is approximately conserved, and the

weak vorticity gradients then imply small vorticity

fluxes. As shown in Fig. 2d, these fluxes vanish exactly in

the zero-vorticity limit a5 0.

To understand how the lack of tropical acceleration

may be consistent with the equatorial convergence of

the eddy (angular) momentum flux, we decompose this

convergence as follows:

2
1

a cos2(f)

›u0y0 cos2(f)
›f

5 y0j0 2u0D0 , (8)

where D5 (a cosf)21(›u/›l1 ›y cosf/›f) is the di-

vergence. The first term on the rhs, the eddy vorticity

flux, dominates the eddymomentum flux convergence in

the extratropics but is very small in the tropics of our
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model, where the rotational flow is very weak. As a re-

sult (cf. Fig. 2d), the full eddymomentum convergence is

dominated by the second term u0D0 , 0, the negative

correlation between u0 and D0 arising from the longitu-

dinal shift of the equatorial convergence eastward of the

heightmaximum (Fig. 2c; see also Showman and Polvani

2011). This term is associated with meridional mass

convergence (divergence) over longitudinal sectors with

westerly (easterly) zonal flow, which increases the eddy

component u0h0 of the mass-weighted momentum

h u*5 hu1 u0h0 at the equator. However, as discussed

in appendix A [and made apparent by Eq. (7)], the

change in the Eulerian-mean momentum u can only

be driven by the eddy vorticity flux in the shallow-

water model.

It is not possible to continue the above simulation

very far into the nonlinear regime without some

treatment of Kelvin wave breaking, which is violent in

this single-layer model. As the simulation becomes

nonlinear, the Kelvin wave steepens, creating a dis-

continuity in the height field and emitting abundant

gravity wave radiation. The simulation breaks down as

the height field eventually goes to zero somewhere in

the domain. Numerically stable solutions are difficult

to obtain, especially in the spectral model utilized here.

Thus, we use a less unstable simulation with a5 0:4

(dashed line in Fig. 2a) to more easily study the equil-

ibration of the instability.

Figures 3a–c show time series of the eddy vorticity

flux (Fig. 3a), the total eddy momentum convergence

(Fig. 3b), and the divergent contribution to this con-

vergence2u0D0 (Fig. 3c) for this simulation.We can see

that the eddy vorticity flux is still very small over a

broad equatorial band for this value of a (even though

FIG. 2. (a) Time series of the domain-averaged standard deviation of the eddy height anomaly for the simulations

with a5 0 (solid) and a5 0:4 (dashed); (b) anomaly structure at t5 10 days with a5 0: geopotential (shading) and

velocity (vectors); (c) eddy momentum flux for the same simulation; and (d) zonal acceleration by the eddy mo-

mentum convergence (thick black) and its partition into the eddy vorticity flux (blue) and the divergentmomentum

convergence (red).
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absolute vorticity no longer vanishes) so that the eddy

momentum flux convergence is again strongly domi-

nated by the divergent forcing. Consistent with this, the

increase in the mass-weighted momentum is entirely

due to the eddy component u0h0, (Fig. 3d) and there is

no superrotation (Fig. 3e).

FIG. 3. For the simulation with a5 0:4, (a)–(c) time series of zonal acceleration (m s21 day21) by (a) the eddy

vorticity flux, (b) the eddy momentum flux convergence, and (c) the divergence forcing; all panels use the vertical

color bar. (d) Eddy momentum u0h0/h and (e) zonal wind change from the initial state; both panels use the hori-

zontal color bar.
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The equilibration of the instability is evidently con-

trolled by the extratropical vorticity fluxes in the Rossby

wave component. The most important effect is likely to

be the generation of regions of well-mixed PV just

equatorward of the jets (Fig. 4c; the jets move poleward

slightly), which occurs near the unstable mode’s steering

latitude, where the interaction between Kelvin and

Rossby wave components is presumably concentrated

(Iga andMatsuda 2005). There is also a poleward shift of

the midlatitude jets (Fig. 4a) and associated PV fronts

(Fig. 4c). Over the tropics, a shallowing of the fluid depth

by the total meridional mass flux, or residual circulation,

decreases the phase speed of the equatorial Kelvin

wave, which could also contribute to a reduction in

phase locking.

The results in this section illustrate how the KR in-

stability in this shallow-water model can grow and

transport momentum equatorward without modifying

the zonal-mean zonal flow significantly, consistent with

the necessarily small vorticity flux in the tropics. Some

mechanism for dissipating the Kelvin wave component

of the KR instability is needed to produce westerly ac-

celeration. Physically plausible Kelvin wave dissipation/

breaking is far easier to achieve in a multilevel model

with vertical propagation than in a shallow-water model,

as illustrated in the following section.

4. Multilevel results

Motivated by the failure of the shallow-water

model to produce superrotation, we have studied the

equilibration of KR instability in the spectral primitive

equation dynamical core described by Held and Suarez

(1994), using again a T42 resolution and 80 vertical

levels. We use the same barotropic wind profile of the

previous section, with a5 0 and the surface pressure and

temperature fields initialized as described in section 2.

Fully replicating the shallow-water setup would require

making the external Kelvin mode resonate with the

extratropical Rossby wave, for which we would expect

results similar to those of the previous section. Hence,

we will focus instead on the instability arising from the

resonant interaction between the Rossby wave and in-

ternal, vertically propagating Kelvin waves. Because our

model has a sponge at the top (aiming to model a radi-

ation boundary condition), these internal Kelvin waves

are not free modes of the equations and would not exist

in the absence of the extratropical Rossby wave. How-

ever, they can bemaintained, forced by the instability, in

spite of the upward radiation (we have varied the pa-

rameters of the sponge damping over a wide range to

ensure the robustness of our results).

This is illustrated in Fig. 5c, which shows an equato-

rial cross section of the most unstable mode obtained

using the control parameters (DQ5 10K, which gives

du/dz’ 1:2Kkm21 as discussed in section 2). For this

stratification, the equivalent depth of the shallow-water

most unstable mode (ghe ’ 1000m2 s22) is obtained

with a vertical wavelength of about 31 km, which is in

good agreement with the results of Fig. 5c (see also

Fig. 6). The slightly weaker growth rate of this mode

compared to the shallow-water model (s21 ’ 0:83 days)

FIG. 4. Initial (blue) and final (red) meridional profiles of (a) zonal momentum, (b) geopotential gh, and (c) potential vorticity H0Q for

the simulation with a5 0:4.
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FIG. 5. For the multilevel model with a5 0, (a) time series of domain-averaged eddy geopotential amplitude and

(b)–(f) eddy structure at t 5 16 days: (b) zonal-mean eddy geopotential variance, (c) eddy geopotential at the

equator, (d) anomaly structure at z5 15 km for geopotential (shading) and velocity (vectors), (e) eddy momentum

flux, and (f) eddy vorticity flux.
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might be due to the energy leakage at the top. A more

important difference is that while the shallow-water

model has a narrow parameter regime of instability

about the most unstable depth gH0 ’ 1000m2 s22, the

primitive equation model has a much broader instability

range (in DQ space) because the Kelvin waves are now

able to choose their vertical scale to resonate with the

Rossby wave. As DQ increases, the vertical wavelength

shrinks to keep the equivalent depth roughly constant at

its optimal value (Fig. 6), with additional phases ap-

pearing in the vertical structure for the largest values of

DQ (not shown). We emphasize that this vertical wave-

length changes continuously and is not quantized, as all

these Kelvin waves propagate vertically. The growth

rate is roughly the same for all these simulations

(not shown).

A more detailed description of the spatial structure of

the anomaly with the control parameters after 16 days

(by which time themost unstablemode has emerged; see

Fig. 5a) is provided in other panels of Fig. 5. Figure 5b

shows that the mode reaches its peak amplitudes at the

latitude of the jet and at the equator. The horizontal

structure at the wave maximum (z ’ 15km) is remi-

niscent of that found in the shallow-water case (Fig. 5d).

Finally, the eddy momentum and vorticity fluxes

(Figs. 5e,f) also have similar meridional structures to

their shallow-water counterparts: there are robust

equatorward momentum fluxes in both hemispheres but

very weak eddy vorticity fluxes over the whole tropics.

In contrast with the shallow-water model, these

equatorward momentum fluxes are now able to induce

robust superrotation (Fig. 7a). For one perspective on

this difference, it is useful to consider the zonal-mean

zonal momentum equation in isentropic coordinates

(homomorphic with the shallow-water equations), using

again its vector invariant form:

›u
u

›t
5 y

u
(f 1 j

u
)2 _Q

›u
u

›u
, (9)

where _Q is the heating rate and the u subscript indicates

that all horizontal derivatives and velocities are calcu-

lated along isentropic surfaces. As in the previous

case, eddy vorticity mixing (Rossby wave breaking)

provides a mechanism to accelerate the flow, but this

would require a Rossby wave source at the equator, and

we expect the isentropic vorticity fluxes to be small like

the isobaric fluxes in Fig. 5f. However, this is no longer

the only route to superrotation as themean flow can now

also be accelerated by cross-isentropic advection (sec-

ond term on the right-hand side). Although our model is

formally adiabatic, we show below that the breaking and

FIG. 6. Vertical wavelength in the primitive equation simulations as a function of the DQ
parameter. The red solid line shows the vertical wavelength that yields the equivalent depth

ghe 5 1000m2 s22 for the given stratification, calculated as 2p/Lz 5 [N2/(ghe)2 1/(4H2)]1/2,

where H is the scale height.
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dissipation of the Kelvin wave gives rise to cross-

isentropic mixing.

Physically, we can understand this result as a conse-

quence of Kelvin’s circulation theorem. As a material

contour is deformed by the eddies, any Eulerian-mean

acceleration is reversible up to the point when dissipa-

tion occurs—the circulation along the contour remains

unchanged until dissipation gives rise to irreversible

mass transport across the contour and induces a net

acceleration. For vorticity waves, this dissipation occurs

as Rossby wave breaking induces a mass transport

across vorticity contours on isentropic surfaces. In con-

trast, Kelvin wave dissipation is associated with irre-

versible mass transport across isentropic contours,

FIG. 7. Final state of the control run (a5 0): (a) zonal wind; (b) zonal wind change from initial state;

(c) temperature change from initial state; (d) initial (blue) and final (red) surface pressure; (e) as in (d), but for zonal

wind at z 5 15 km; and (f) as in (d), but for absolute vorticity.
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approximately in the vertical direction. Failure of our

shallow-water model to superrotate can then be attrib-

uted to its inability to produce the required Kelvin wave

breaking and dissipation in this direction.

To test these ideas, we have performed an isentropic

analysis of our control primitive equation simulation.

Figure 8 shows time series of the Eulerian-mean wind

u, the eddy component u0h0/h, and the total mass-weighted

wind u* in isentropic coordinates (h is the isentropic

thickness in this context), averaged near the level of max-

imum acceleration (315K). We can see that in the early

phases of the equilibration (days 17–18), only u0h0 in-

creases while u remains unchanged, similar to the shallow-

water results. We may think of this as a quasi-linear

stage, during which eddies grow to finite amplitude but

do not break. However, after a short delay, the instability

is able to modify u, and by the end of the simulation,

the response is dominated by the mean wind changes.

Figure 9 describes this process in more detail by

showing the evolution of equatorial potential tempera-

ture between days 17 and 21 of the simulation. A wavy

perturbation superimposed to the uniformly stratified

profile is apparent at time t5 17 days, near the end of the

quasi-linear stage. At t5 18 days, a strong thermal front

is created around z5 15km as theKelvin wave steepens.

Small-scale structure is already apparent at this stage

and intensifies notably by day t 5 19 days, including

regions with unstable stratification. Numerical dissipa-

tion must induce cross-isentropic transport at this

stage, which leads to the dissipation of the thermal

front a few days later (t 5 21 days; Fig. 9d). The dis-

sipation of the front produces a negative _Q›uu/›u

and a mean-flow acceleration [cf. Eq. (9)] because the

homogenization of isentropic thickness demands cross-

isentropic transport from weakly to strongly stratified

regions (high and low h0, respectively). These also cor-

respond to regions with positive and negative u0 because
of the positive u0h0 correlation so that the wave breaking

essentially provides a mechanism to convert the eddy

momentum u0h0 into a Eulerian-mean acceleration.

We have not attempted to document the dynamics of

the Kelvin wave breaking in detail, which may involve

small-scale frontal instability and gravity wave emission

(e.g., Fritts et al. 1994), as the details of the breaking are

likely sensitive to the numerics and not well resolved in

our model. Our model is hydrostatic and has no con-

vective adjustment or momentum transport so that

convection only occurs on the (coarse) grid scale. A

much higher resolution would also be needed to resolve

the strong gravity wave radiation emitted during the

breaking process. Our claim is that the zonal-mean

momentum evolution is controlled to lowest order by

the outer scale of the overturning Kelvin wave, the

depth of the overturning region, and not by the details of

FIG. 8. Time series of Eulerian-mean momentum u (blue), eddy momentum u0h0/h (red),

and net mass-weighted momentum u* (black) in isentropic coordinates for the primitive

equation model at the equator at the 315-K isentropic level.
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the wave breaking process. From the point of view of the

large-scale circulation, the main reading of Fig. 9 is that

the steepening of the Kelvin wave as the KR instability

reaches finite amplitude and subsequent Kelvin wave

breaking leads to dissipation and cross-isentropic mass

transport in the primitive equation model. This cross-

isentropic transport is likely crucial for allowing our

model to equilibrate. Had we performed an actual adi-

abatic isentropic simulation, we would expect the

simulation to break down as isentropic depth vanishes

in some regions, similar to what we found in the shallow-

water model. Presumably, the weakly unstable shallow-

water simulation described in section 3 is able to

equilibrate quasi linearly because u0h0 can reach its sat-

uration level with h0 , h (cf., Fig. 3e) and Kelvin waves

do not break.

Figure 10 describes the evolution of the main terms in

the vertically averaged momentum balance during the

equilibration of the KR instability, which produces a

westerly acceleration at the equator (Fig. 10a). Since it is

not straightforward to compute the cross-isentropic

mixing from the model output, we use an indirect

method to estimate this term. As shown in appendix B,

we may approximate in the tropics for this problem:

�
_Q
›u

u

›u

�
u

’

�
v
›u

›p

�
p

, (10)

using angle brackets to denote mass-weighted vertical in-

tegrals in u or p coordinates. Thus, we estimate the net

column acceleration by cross-isentropic mixing using

the vertically integrated vertical advection in pressure

FIG. 9. Potential temperature on the equatorial plane from day 17 to day 21 of the simulation.
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coordinates. Based on the divergence form of the mo-

mentum equation, the vertically averaged acceleration in

Fig. 10a is forced by the vertically averaged meridional

eddy momentum convergence associated with the in-

stability (Fig. 10b). Using the vector invariant form, the

eddy vorticity flux (Fig. 10c; here computed in isobaric

coordinates) plays virtually no role, and the acceleration is

entirely driven by the cross-isentropic mixing (Fig. 10d).

Figure 7 summarizes themean flow adjustment for our

a5 0 run with the full GCM. The equatorial accelera-

tion (Figs. 7a,b) appears to be a key ingredient to the

equilibration: once the equatorial westerlies develop,

the Kelvin andRossby waves are no longer able to phase

lock in their counterpropagation, and the instability

must necessarily shut down [this is why KR instability

may only spin up—but not maintain—equatorial su-

perrotation, as noted by Pinto and Mitchell (2014)].

Although there is a poleward shift of themidlatitude jets

as in the shallow-water case, this is now also accompa-

nied by strong deceleration. We observe weak cooling

(heating) over the tropical (extratropical) region

(Fig. 7c) and a net poleward mass transport by the cir-

culation (Fig. 7d). Figures 7e,f show the final wind and

vorticity structure at the z 5 15-km level. We can see

that vorticity is efficiently mixed on both sides of the

superrotating jet, with large vorticity gradient de-

veloping at the equator in association with that jet. This

mixing on the sides of the jet presumably also helps to

reduce the ability of the Rossby and Kelvin components

of the instability to interact.

FIG. 10. For the control multilevel simulation (a5 0), time series of (a) vertically averaged zonal wind changes

from the initial state, (b) vertically averaged eddy momentum flux convergence, (c) vertically averaged isobaric

vorticity flux, and (d) vertically averaged cross-isentropic advection.
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5. Comparison with other shallow-water
simulations

There are obvious similarities between the results

described here and superrotation in the forced simula-

tions of Showman and Polvani (2011). In both cases,

superrotation is driven by the interaction between a

Kelvin wave and a Rossby wave, though the forcing

mechanism for these waves is different. In the model of

Showman and Polvani (2011), the waves are forced by

asymmetric tropical heating as in Gill (1980), while in

our model, they are generated spontaneously by an

ageostrophic instability.

Showman and Polvani (2011) find superrotation in

both shallow-water and primitive equation simulations

but onlywhen verticalmomentumadvection is included in

the former. The issue is discussed in more detail by

Showman andPolvani (2010).Using a standard one-layer

model forced by mass sources and sinks, these authors

find eddy momentum convergence but no mean-flow

acceleration at the equator, as the equatorial momentum

convergence is cancelled by u0D0 in their Eulerian-mean

zonal wind balance [cf. their Eq. (5) and Fig. 1c]. This

implies that the eddy vorticity flux vanishes and all the

eddy momentum convergence is due to the divergent

motions as in our simulations. Interestingly, Showman

and Polvani were able to achieve superrotation when

vertical (cross isentropic) momentum advection was in-

cluded in their model, mimicking the exchange of mo-

mentum with a motionless lower layer accompanying

mass exchange, using the ‘‘first-order upstream’’ formu-

lation of Shell andHeld [2004; this is the setup used in the

more comprehensive simulations of Showman and

Polvani (2011)]. This momentum exchange can be ef-

fective in damping forced Kelvin wave–like circulations.

Motivated by these results for a forced problem, we

tried adding nonconservative terms to our unforced

shallow-water model. Adding simple linear thermal

(height) damping to our shallow-water model, we could

only achieve weak equatorial westerlies even when in-

cluding the momentum transport associated with the

implied mass transport. This weakness in our case is

likely connected to the fact that increasing the damping

to dissipate the Kelvin wave more efficiently is pre-

sumably also enough to stabilize the flow. We also

attempted nonlinear damping or, as an alternative, a

simple mass adjustment scheme in the shallow-water

model that injected mass into the layer whenever its

depth went below some small, specified threshold. We

were able to obtain shallow-water superrotation with

this method, although in the more unstable simulations,

the mean depth increased by a large factor, a behavior

not seen in our multilevel results.

The difficulty of forcing shallow-water superrotation

in a Gill-like setting, with imposed asymmetric tropical

heating, and its sensitivity to nonconservative effects,

can be contrasted to the case studied by Suhas et al.

(2017) in which Rossby wave propagation can drive

shallow-water superrotation when the vorticity equa-

tion is forced directly (as opposed to forcing the conti-

nuity/thermodynamic equation). The latter is consistent

with the standard paradigm of superrotation forced by

Rossby wave propagation out of the tropics (e.g.,

Suarez and Duffy 1992) but does not address the

physical plausibility of vorticity stirring versus thermal

forcing (or mass sources/sinks) in the shallow-water

context.

In our study, the generation of the wave is sponta-

neous, being an instability that evolves from in-

finitesimal noise, so the question of sensitivity to the

mode of forcing does not arise. However, we cannot

avoid the question of the role of dissipation in the finite-

amplitude evolution of the instability. Mixing of PV by

the Rossby wave component of the instability in the

subtropics and midlatitudes is present in all cases, but

our results indicate that dissipation/breaking of the

Kelvin wave component is essential for superrotation

and difficult to mimic in a single-layer shallow-water

context.

6. Concluding remarks

Wehave shown that a Kelvin–Rossby (KR) instability

spins up an equatorial westerly jet as it equilibrates in an

idealized GCM, supporting the notion that this in-

stability is responsible for the superrotation in small/

slowly rotating planets (Iga and Matsuda 2005) and in

documented simulations with idealized GCMs at large

thermal Rossby numbers (Mitchell and Vallis 2010;

Potter et al. 2014). The conditions for this are similar in

kind to those required by other such instabilities: similar

phase speeds of the Kelvin wave and Rossby wave

components and spatial overlap between the two com-

ponents. The latter is facilitated in small or slowly ro-

tating planets and also provides a natural explanation

for the results of Williams (2003) in which superrotation

can be generated in an Earth-like GCM by moving the

baroclinic zone closer to the equator.

The instabilities have the same qualitative structure in

the shallow-water and multilevel simulations, with

equatorward flux of angular momentum consistent with

the form of the pseudomomentum. An interesting dis-

tinction is that, because the coupling in the multilevel

case is between Rossby waves with maximum ampli-

tude near the tropopause and vertically propagating
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equatorial Kelvin waves, the instability is more robust

in this case than in a shallow-water model because the

vertical wavelength of the Kelvin wave can adjust so

that its eastward phase speed matches that of the

Rossby wave.

We find that conservative shallow-water simulations

of the instability do not superrotate as measured by the

zonal-mean zonal winds, as could be anticipated from

the zonal-mean momentum equation. Some super-

rotation can be obtained when adding thermal or me-

chanical damping, but it is typically weak. A model with

more vertical structure is needed to produce the super-

rotating state in a more robust manner. Our results un-

derscore the important role played by breaking and

dissipation of the Kelvin wave component of the in-

stability, without which there can be no tropical accel-

eration in this model (Andrews and McIntyre 1976).

While there is net equatorward momentum flux by this

instability in both the shallow-water and multilevel

GCM simulations, in the former, this momentum resides

in the u0h0 component, which is realized as a change in

the zonal-mean zonal wind only when the Kelvin

wave breaks.

Our simulations admittedly do not provide a clean

simulation of the breaking process itself, which would

likely require a different modeling strategy. For the

purpose of this paper, we have tried to stay in the

framework of a dynamical core study that is easily rep-

licated without a full GCM and even without a subgrid

vertical mixing scheme. Our hypothesis is that the de-

tails of the breaking do not affect the robustness of the

generation of the superrotating state, which is con-

trolled by the large-scale parameters of the breaking

Kelvin wave.

We believe that this KR instability will prove to be a

robust and centrally important component of planetary

atmospheres with O(1) thermal Rossby numbers.

Whether this coupled wave instability mechanism also

operates in moist atmospheres in the terrestrial regime,

especially as the atmosphere warms, with the slowing of

eastward wave propagation through convective cou-

pling allowing the KR instability to form with smaller

thermal Rossby numbers, is clearly an important ques-

tion for future work.
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APPENDIX A

Forcing of the Eulerian-Mean Momentum in Layer
Models

Consider an inviscid shallow-water model that con-

serves potential vorticity q5 (f 1 j)/h, using Cartesian

coordinates for simplicity. The transformed Eulerian-

mean momentum equation for this model is

›u

›t
5 (f 1 j)y1 y0j0 5 (f 1 j)y*1 h y0q0 , (A1)

where y*5 y1 y0h0/h is the residual flow and the line-

arized eddy potential vorticity flux is

h y0q0 5 y0j0 2 (f 1 j)y0h0/h .

Combining Eq. (A1) with continuity,

›h

›t
52

›

›y
(h y*),

we obtain for the rate of change of the Eulerian-mean

momentum,

›

›t
(Mh)52

›

›y
(h y*M)1 h2y0q0 , (A2)

where M5 u2
Ð
f dy is absolute angular momentum.

On the other hand, we can combine the linearized eddy

momentum and continuity equations (written for sim-

plicity in a reference system moving with the mean flow):

›u0

›t
5 (f 1 j)y0 2 g

›h0

›x
,

›h0

›t
52y0

›h

›y
2 h

›y0

›y

to obtain for the eddy component of the mass-weighted

momentum,

›

›t
(u0h0)52h2y0q0 2

›

›y
(h u0y0) . (A3)

Combining this equation with the tendency for the

mean momentum equation [Eq. (A2)], we finally obtain

for the mass-weighted momentum,

›

›t
(hM*)52

›

›y
(h y*M)2

›

›y
(h u0y0) . (A4)

Thus, we can see that the mass-weighted momentum

hM* is forced by the eddy momentum convergence

2›(h u0y0)/›y [which is also (minus) the pseudomo-

mentum forcing for this model; e.g., Held (1985)], but
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changing the Eulerian-mean momentum hM requires a

nonzero PV flux [Eq. (A2)]. When the eddy PV flux is

zero, as in the problem discussed in section 3 (in that

problem, h y0q0 ’ y0j0 because f 1 j’ 0), the eddy mo-

mentum convergence only accelerates the eddy term u0h0

[Eq. (A3)].

These arguments can be generalized to the continuous

case replacing h with isentropic density in isentropic

coordinates. A key difference in that case is the addition

of a cross-isentropic advection term to the right-hand

side of Eq. (A1), which can also accelerate the mean

flow in the absence of an eddy PV flux. As shown in

section 4, this is the dominant mechanism in the tropics

of our primitive equation model.

APPENDIX B

Justification of the Approximation in Eq. (10)

In section 4, we use the vertically integrated vertical

momentum advection in pressure coordinates as an es-

timate of the net cross-isentropic momentum mixing

along the column. To justify this approximation, we first

relate the angular momentum forcing in divergence

form to the vorticity flux in pressure coordinates:

›

›p
(vu)1

1

a cos2f

›

›f
(yu cos2f)5v

›u

›p
2 yj . (B1)

Doing the same in isentropic coordinates,

›

›u
(s _Qu

u
)1

1

a cos2f

›

›f
(sy

u
u
u
cos2f)5s _Q

›u
u

›u
2sy

u
j
u
,

(B2)

where s52›p/›u is isentropic density multiplied by

gravity.

Since the left-hand sides of Eqs. (B1) and (B2) have

the same vertical integral, equal to the net momentum

convergence along the column, we obtain�
_Q
›u

u

›u

�
u

2

�
v
›u

›p

�
p

5 hy
u
j
u
i
u
2 hyji

p
, (B3)

where angle brackets indicate mass-weighted vertical

integrals in u or p coordinates. Because vorticity fluxes

are very small in the tropics for this problem (both in

u and p coordinates), the two terms on the left-hand side

are very similar.

REFERENCES

Andrews, D., and M. E. McIntyre, 1976: Planetary waves in hori-

zontal and vertical shear: The generalized Eliassen-Palm re-

lation and the mean zonal acceleration. J. Atmos. Sci., 33,

2031–2048, https://doi.org/10.1175/1520-0469(1976)033,2031:

PWIHAV.2.0.CO;2.

Caballero, R., and M. Huber, 2010: Spontaneous transition to su-

perrotation in warm climates simulated by CAM3. Geophys.

Res. Lett., 37, L11701, https://doi.org/10.1029/2010GL043468.

Dias Pinto, J. R., and J. L. Mitchell, 2014: Atmospheric super-

rotation in an idealized GCM: Parameter dependence of the

eddy response. Icarus, 238, 93–109, https://doi.org/10.1016/

j.icarus.2014.04.036.

Dunkerton, T. J., 1990: Eigenfrequencies and horizontal structure

of divergent barotropic instability originating in tropical lati-

tudes. J. Atmos. Sci., 47, 1288–1301, https://doi.org/10.1175/

1520-0469(1990)047,1288:EAHSOD.2.0.CO;2.

Fritts, D. C., J. R. Isler, and Ø. Andreassen, 1994: Gravity wave

breaking in two and three dimensions: 2. Three-dimensional

evolution and instability structure. J. Geophys. Res., 99, 8109–

8123, https://doi.org/10.1029/93JD03436.

Gill, A., 1980: Some simple solutions for heat-induced tropical

circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462, https://

doi.org/10.1002/qj.49710644905.

Gula, J., R. Plougonven, and V. Zeitlin, 2009: Ageostrophic

instabilities of fronts in a channel in a stratified rotating

fluid. J. Fluid Mech., 627, 485–507, https://doi.org/10.1017/

S0022112009006508.

Hayashi, Y.-Y., and W. Young, 1987: Stable and unstable

shear modes of rotating parallel flows in shallow water.

J. Fluid Mech., 184, 477–504, https://doi.org/10.1017/

S0022112087002982.

Held, I. M., 1985: Pseudomomentum and the orthogonality ofmodes

in shear flows. J. Atmos. Sci., 42, 2280–2288, https://doi.org/

10.1175/1520-0469(1985)042,2280:PATOOM.2.0.CO;2.

——, andM. J. Suarez, 1994: A proposal for the intercomparison of

the dynamical cores of atmospheric general circulationmodels.

Bull. Amer. Meteor. Soc., 75, 1825–1830, https://doi.org/

10.1175/1520-0477(1994)075,1825:APFTIO.2.0.CO;2.

Hide, R., 1969: Dynamics of the atmospheres of the major planets

with an appendix on the viscous boundary layer at the rigid

bounding surface of an electrically-conducting rotating fluid in

the presence of a magnetic field. J. Atmos. Sci., 26, 841–853,

https://doi.org/10.1175/1520-0469(1969)026,0841:DOTAOT.2.0.

CO;2.

Iga, S.-i., and Y.Matsuda, 2005: Shear instability in a shallow water

model with implications for the Venus atmosphere. J. Atmos.

Sci., 62, 2514–2527, https://doi.org/10.1175/JAS3484.1.

Kraucunas, I., and D. L. Hartmann, 2005: Equatorial superrotation

and the factors controlling the zonal-mean zonal winds in the

tropical upper troposphere. J. Atmos. Sci., 62, 371–389, https://

doi.org/10.1175/JAS-3365.1.

Lee, S., 1999:Why are the climatological zonal winds easterly in the

equatorial upper troposphere? J. Atmos. Sci., 56, 1353–1363,

https://doi.org/10.1175/1520-0469(1999)056,1353:WATCZW.2.0.

CO;2.

Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial

area. J. Meteor. Soc. Japan, 44, 25–43, https://doi.org/10.2151/

jmsj1965.44.1_25.

Mitchell, J. L., and G. K. Vallis, 2010: The transition to super-

rotation in terrestrial atmospheres. J. Geophys. Res., 115,

E12008, https://doi.org/10.1029/2010JE003587.

Polvani, L.M., and J. Esler, 2007: Transport andmixing of chemical

air masses in idealized baroclinic life cycles. J. Geophys. Res.,

112, D23102, https://doi.org/10.1029/2007JD008555.

Potter, S. F., G. K. Vallis, and J. L. Michell, 2014: Spontaneous

superrotation and the role of Kelvin waves in an idealized dry

JULY 2018 ZUR I TA -GOTOR AND HELD 2315

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 10/01/21 01:07 PM UTC

https://doi.org/10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2
https://doi.org/10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2
https://doi.org/10.1029/2010GL043468
https://doi.org/10.1016/j.icarus.2014.04.036
https://doi.org/10.1016/j.icarus.2014.04.036
https://doi.org/10.1175/1520-0469(1990)047<1288:EAHSOD>2.0.CO;2
https://doi.org/10.1175/1520-0469(1990)047<1288:EAHSOD>2.0.CO;2
https://doi.org/10.1029/93JD03436
https://doi.org/10.1002/qj.49710644905
https://doi.org/10.1002/qj.49710644905
https://doi.org/10.1017/S0022112009006508
https://doi.org/10.1017/S0022112009006508
https://doi.org/10.1017/S0022112087002982
https://doi.org/10.1017/S0022112087002982
https://doi.org/10.1175/1520-0469(1985)042<2280:PATOOM>2.0.CO;2
https://doi.org/10.1175/1520-0469(1985)042<2280:PATOOM>2.0.CO;2
https://doi.org/10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2
https://doi.org/10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2
https://doi.org/10.1175/1520-0469(1969)026<0841:DOTAOT>2.0.CO;2
https://doi.org/10.1175/1520-0469(1969)026<0841:DOTAOT>2.0.CO;2
https://doi.org/10.1175/JAS3484.1
https://doi.org/10.1175/JAS-3365.1
https://doi.org/10.1175/JAS-3365.1
https://doi.org/10.1175/1520-0469(1999)056<1353:WATCZW>2.0.CO;2
https://doi.org/10.1175/1520-0469(1999)056<1353:WATCZW>2.0.CO;2
https://doi.org/10.2151/jmsj1965.44.1_25
https://doi.org/10.2151/jmsj1965.44.1_25
https://doi.org/10.1029/2010JE003587
https://doi.org/10.1029/2007JD008555


GCM. J. Atmos. Sci., 71, 596–614, https://doi.org/10.1175/

JAS-D-13-0150.1.

Ripa, P., 1983: General stability conditions for zonal flows in a one-

layer model on the b-plane or the sphere. J. Fluid Mech., 126,
463–489, https://doi.org/10.1017/S0022112083000270.

Sakai, S., 1989: Rossby-Kelvin instability: A new type of ageo-

strophic instability caused by a resonance between Rossby

waves and gravity waves. J. Fluid Mech., 202, 149–176, https://
doi.org/10.1017/S0022112089001138.

Saravanan, R., 1993: Equatorial superrotation and maintenance of

the general circulation in two-level models. J. Atmos. Sci., 50,

1211–1227, https://doi.org/10.1175/1520-0469(1993)050,1211:

ESAMOT.2.0.CO;2.

Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation

of global rotational flow by steady idealized tropical

divergence. J. Atmos. Sci., 45, 1228–1251, https://doi.org/

10.1175/1520-0469(1988)045,1228:TGOGRF.2.0.CO;2.

Scott, R., and L. M. Polvani, 2008: Equatorial superrotation in

shallow atmospheres. Geophys. Res. Lett., 35, L24202, https://
doi.org/10.1029/2008GL036060.

Shell, K. M., and I. M. Held, 2004: Abrupt transition to strong su-

perrotation in an axisymmetric model of the upper troposphere.

J. Atmos. Sci., 61, 2928–2935, https://doi.org/10.1175/JAS-3312.1.

Showman, A. P., and L. M. Polvani, 2010: TheMatsuno-Gill model

and equatorial superrotation.Geophys. Res. Lett., 37, L18811,

https://doi.org/10.1029/2010GL044343.

——, and ——, 2011: Equatorial superrotation on tidally locked

exoplanets. Astrophys. J., 738, 71, https://doi.org/10.1088/

0004-637X/738/1/71.

Suarez, M. J., and D. G. Duffy, 1992: Terrestrial superrotation:

A bifurcation of the general circulation. J. Atmos. Sci., 49,

1541–1554, https://doi.org/10.1175/1520-0469(1992)049,1541:

TSABOT.2.0.CO;2.

Suhas, D., J. Sukhatme, and J. M. Monteiro, 2017: Tropical vor-

ticity forcing and superrotation in the spherical shallow-water

equations. Quart. J. Roy. Meteor. Soc., 143, 957–965, https://

doi.org/10.1002/qj.2979.

Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics.

Cambridge University Press, 745 pp.

Vanneste, J., and I. Yavneh, 2007: Unbalanced instabilities

of rapidly rotating stratified shear flows. J. Fluid Mech., 584,
373–396, https://doi.org/10.1017/S002211200700643X.

Wang, P., and J. L. Mitchell, 2014: Planetary ageostrophic

instability leads to superrotation. Geophys. Res. Lett., 41,

4118–4126, https://doi.org/10.1002/2014GL060345.

Williams, G. P., 2003: Barotropic instability and equatorial super-

rotation. J. Atmos. Sci., 60, 2136–2152, https://doi.org/10.1175/

1520-0469(2003)060,2136:BIAES.2.0.CO;2.

Winter, T., and G. Schmitz, 1998: On divergent barotropic and

inertial instability in zonal-mean flow profiles. J. Atmos.

Sci., 55, 758–776, https://doi.org/10.1175/1520-0469(1998)

055,0758:ODBAII.2.0.CO;2.

2316 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 75

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 10/01/21 01:07 PM UTC

https://doi.org/10.1175/JAS-D-13-0150.1
https://doi.org/10.1175/JAS-D-13-0150.1
https://doi.org/10.1017/S0022112083000270
https://doi.org/10.1017/S0022112089001138
https://doi.org/10.1017/S0022112089001138
https://doi.org/10.1175/1520-0469(1993)050<1211:ESAMOT>2.0.CO;2
https://doi.org/10.1175/1520-0469(1993)050<1211:ESAMOT>2.0.CO;2
https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2
https://doi.org/10.1029/2008GL036060
https://doi.org/10.1029/2008GL036060
https://doi.org/10.1175/JAS-3312.1
https://doi.org/10.1029/2010GL044343
https://doi.org/10.1088/0004-637X/738/1/71
https://doi.org/10.1088/0004-637X/738/1/71
https://doi.org/10.1175/1520-0469(1992)049<1541:TSABOT>2.0.CO;2
https://doi.org/10.1175/1520-0469(1992)049<1541:TSABOT>2.0.CO;2
https://doi.org/10.1002/qj.2979
https://doi.org/10.1002/qj.2979
https://doi.org/10.1017/S002211200700643X
https://doi.org/10.1002/2014GL060345
https://doi.org/10.1175/1520-0469(2003)060<2136:BIAES>2.0.CO;2
https://doi.org/10.1175/1520-0469(2003)060<2136:BIAES>2.0.CO;2
https://doi.org/10.1175/1520-0469(1998)055<0758:ODBAII>2.0.CO;2
https://doi.org/10.1175/1520-0469(1998)055<0758:ODBAII>2.0.CO;2

